THE VLTI+CHARA CEPHEID PROGRAM

PIERRE KERVELLA (LESIA), ANTOINE MÉRAND (ESO), ALEXANDRE GALLENNE (UdeC), JOANNE BREITFELDER (ESO/LESIA), NICOLAS NARDETTO (OCA), JOHN MONNIER (UMich), AND MANY OTHERS
THE CEPHEID PROGRAM
THE CEPHEID PROGRAM

• A long-term effort started in 2001 at VLTI (VINCI, then PIONIER) and in 2004 at CHARA
THE CEPHEID PROGRAM

• A long-term effort started in 2001 at VLTI (VINCI, then PIONIER) and in 2004 at CHARA

• Three "sub-programs":

 1. Distances (B-W): FLUOR, PIONIER, VEGA

 2. Circumstellar envelopes: FLUOR, VEGA

 3. Cepheids in binary systems: MIRC, PIONIER
THE INTERFEROMETRIC BAADE-WESSELINK TECHNIQUE (IBW)
THE INTERFEROMETRIC BAADE-WESSELINK TECHNIQUE (IBW)

Gives the radius and the distance of a pulsating star
THE INTERFEROMETRIC BAADE-WESSELINK TECHNIQUE (IBW)

Gives the radius and the distance of a pulsating star

Based on two types of data:

1. Radial velocity from spectroscopy
THE INTERFEROMETRIC BAADE-WESSELINK TECHNIQUE (IBW)

Gives the radius and the distance of a pulsating star

Based on two types of data:

1. Radial velocity from spectroscopy
2. Angular size from interferometry
1. SPECTROSCOPY
1. SPECTROSCOPY

- Expansion
- Max radius
- Contraction
- Min radius
Spectroscopy gives the \textit{variation} in linear radius of the star from:

\[\delta R(T) = -p \int_0^T v_{\text{rad}}(t) \, dt \]
Spectroscopy gives the variation in linear radius of the star from:

\[\delta R(T) = -p \int_0^T v_{\text{rad}}(t) \, dt \]

\(p = \) projection factor
\(= V_{\text{puls}} / V_{\text{rad}} \)
\(\sim 1.3 \)

measured on \(\delta \) Cep + models
2. INTERFEROMETRY
2. INTERFEROMETRY
Gives the *angular size variation* of the star
The distance d is given by the relation:

$$d = \frac{2\delta R(T)}{\delta \theta(T)} = \frac{-2 kp \int_0^T v_{\text{rad}}(t) \, dt}{\theta_{\text{UD}}(T) - \theta_{\text{UD}}(0)}$$
The distance d is given by the relation:

$$d = \frac{2\delta R(T)}{\delta \theta(T)} = -2 kp \int_0^T v_{\text{rad}}(t) \, dt$$

$$\frac{\theta_{\text{UD}}(T) - \theta_{\text{UD}}(0)}{\theta_{\text{UD}}(T)}$$
The distance d is given by the relation:

$$d = \frac{2 \delta R(T)}{\delta \theta(T)} = \frac{-2 kp \int_0^T v_{\text{rad}}(t) \, dt}{\theta_{\text{UD}}(T) - \theta_{\text{UD}}(0)}$$
The distance d is given by the relation:

$$d = \frac{2\delta R(T)}{\delta \theta (T)} = -\frac{2 kp \int_0^T v_{rad}(t) \, dt}{\theta_{UD}(T) - \theta_{UD}(0)}$$
The distance d is given by the relation:

$$d = \frac{2\delta R(T)}{\delta \theta(T)} = \frac{-2k \rho \int_{0}^{T} v_{\text{rad}}(t) \, dt}{\theta_{UD}(T) - \theta_{UD}(0)}$$

$k = \text{limb darkening correction (from models)}$

$= \frac{\theta_{UD}}{\theta_{LD}}$

$\sim 0.94 \text{ in visible, } 0.98 \text{ in IR}$
The distance d is given by the relation:

$$d = \frac{2\delta R(T)}{\delta \theta(T)} = \frac{-2 kp \int_0^T v_{\text{rad}}(t) \, dt}{\theta_{\text{UD}}(T) - \theta_{\text{UD}}(0)}$$

$k = \text{limb darkening correction (from models)}$

$= \frac{\theta_{\text{UD}}}{\theta_{\text{LD}}}$

~ 0.94 in visible, 0.98 in IR
δ CEP: A MEASUREMENT OF p
δ CEP: A MEASUREMENT OF p

Δ CEP: A MEASUREMENT OF p

δ CEP: A MEASUREMENT OF p

p-factor = 1.27 ± 0.06, with $d=274 \pm 11$ pc from HST-FGS

Y OPH (CHARA/FLUOR)

Gallenne et al. 2013, in prep.
Y OPH (CHARA/FLUOR)

Gallenne et al. 2013, in prep.

Gallenne et al. 2013, in prep.
Y OPH (CHARA/FLUOR)

Distance: 472 ± 18 pc (4%)

Gallenne et al. 2013, in prep.

Y OPH (CHARA/FLUOR)

Distance: 472 ± 18 pc (4%) for $p = 1.27$ and $k = 0.983$

Gallenne et al. 2013, in prep.
KAPPA PAV (PIONIER, P91)

Breitfelder et al. (2014, in prep.)
KAPPA PAV (PIONIER, P91)

Breitfelder et al. (2014, in prep.)
KAPPA PAV (PIONIER, P91)

Scheduling was a problem!

Work in progress

Breitfelder et al. (2014, in prep.)
Mérand et al. 2014, in prep.
CEPHEIDS OBSERVED BY INTERFEROMETRY
CEPHEIDS OBSERVED BY INTERFEROMETRY

[Polaris] (3.97 d)
δ Cep (5.36 d)
X Sgr (7.01 d)
η Aql (7.17 d)
W Sgr (7.59 d)
β Dor (9.84 d)
L Car (35.6 d)
[RS Pup] (41.4 d)
CEPHHEIDS OBSERVED BY INTERFEROMETRY

24 stars, with 22 stars suitable for IBW distance
P93 program with PIONIER (5 stars) + VEGA (5 stars)
Δ Cep

PTI (2001)

Δ Cep

CEPHEIDS IN BINARIES

- Binary systems are very useful to derive masses and distances
- Cepheids are extremely bright ($10^3 - 10^5$ L_{sun}), companions are difficult to detect
- Only a handful discovered using UV spectroscopy (essentially by Nancy Evans et al.)
- Most systems are unresolved SB1, except Polaris and distant companions on multi-century orbits
- Survey with CHARA/MIRC and VLTI/PIONIER: the companions of V1334 Cyg and AX Cir have been spatially resolved
AX CIR (VLTI/PIONIER)

Primary:
- Classical Cepheid
- Puls. $P = 5.27$ days
- $d \approx 500$ pc
- $H = 3.85$

AX CIR (VLTI/PIONIER)

Primary:
- Classical Cepheid
- Puls. P=5.27 days
- d ~ 500 pc
- H = 3.85

AX CIR (VLTI/PIONIER)

Primary:
- Classical Cepheid
- Puls. $P=5.27$ days
- $d \approx 500$ pc
- $H = 3.85$

AX CIR (VLTI/PIONIER)

AX CIR (VLTI/PIONIER)

<table>
<thead>
<tr>
<th></th>
<th>2013-07-11</th>
<th>2012-07-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single star model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_{UD} (mas)</td>
<td>0.770 ± 0.016</td>
<td>0.931 ± 0.019</td>
</tr>
<tr>
<td>θ_{LD} (mas)</td>
<td>0.787 ± 0.016</td>
<td>0.952 ± 0.020</td>
</tr>
<tr>
<td>χ^2_r</td>
<td>1.45</td>
<td>1.09</td>
</tr>
<tr>
<td>Binary model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_{UD} (mas)</td>
<td>0.726 ± 0.020</td>
<td>0.821 ± 0.022</td>
</tr>
<tr>
<td>θ_{LD} (mas)</td>
<td>0.742 ± 0.020</td>
<td>0.839 ± 0.023</td>
</tr>
<tr>
<td>f (%)</td>
<td>0.75 ± 0.17</td>
<td>0.90 ± 0.10</td>
</tr>
<tr>
<td>$\Delta \alpha$ (mas)</td>
<td>6.421 ± 0.198</td>
<td>6.153 ± 0.155</td>
</tr>
<tr>
<td>$\Delta \delta$ (mas)</td>
<td>-28.366 ± 0.366</td>
<td>-28.584 ± 0.229</td>
</tr>
<tr>
<td>χ^2_r</td>
<td>1.17</td>
<td>0.72</td>
</tr>
</tbody>
</table>

AX CIR (VLTI/PIONIER)

Secondary:
- B6V dwarf
- Orbit 17.9 years
- sep. ~ 30 mas
- $f=0.83 \pm 0.17\%$

V1334 CYG (CHARA/MIRC)

Separation = 8 mas, Contrast (H) = 3.1\%, Period = 5.3 yr

HST/FGS astrometry and STIS spectroscopy in Cycle 21 to derive the distance and masses to 1%