Active Galactic Nuclei: the VLTI view

Konrad R. W. Tristram Max-Planck-Institut für Radioastronomie

Current and former AGN VLTI interferometrists: D. Asmus, Th. Beckert, L. Burtscher, S.F. Hönig, W. Jaffe, M.Kishimoto, N. López-Gonzaga, K. Meisenheimer, A. Poncelet, J.-U. Pott, D. Raban. G. Weigelt, M. Wittkowski

Overview

- Introduction: the dusty torus in AGN
- Overview over optical interferometry of AGN
- Individual sources:
 - NGC1068, the Circinus galaxy, Centaurus A
 - NGC3783, NGC424
 - Comparison of the individual sources
- Small surveys:
 - AGN Large Programme
 - Sample of type 1 sources
- Conclusions

1. Introduction: the dusty torus in AGN

Open questions:

- How true is this picture?
- Do Sy1 and Sy2 have the same tori
- Geometry of the torus?
- What keeps the torus thick?
- Dynamics of the torus (outflow / inflow / ...)?
- Role of the torus for accretion?

1. Introduction: the dusty torus in AGN

1. Introduction: observing the torus

2. Overview: AGN optical interferometry

- main work in the MIR with MIDI:
 individual sources (NGC1068, ...)
 - samples of AGN: snapshot survey, AGN LP, Seyfert 1s)
- near-infrared (Keck Interferometer)
 - three studies of NGC4151
 - two studies of type 1 samples
- near-infrared with the VLTI
 - VINCI observation of NGC1068
 - AMBER observations of type 1
 - PIONIER observations

Jaffe et al. 2004

Two Blackbody Gaussians:						
FWHM major:	Δ ₁ =	20±3 mas				
FWHM minor:	δ ₁ =	6±1 mas				
Position angle	α ₁ =	42±2°				
Silicate depth:	т ₁ =	1.9±0.5				
Temperature:	T ₁ =	800±150 K				
Covering factor:	f ₁ =	0.25±0.07				
FWHM major:	Δ ₂ =	56±5 mas				
FWHM minor:	δ ₂ =	42±5 mas				
Position angle:	α ₂ =	0±50°				
Silicate depth:	т ₂ =	0.42±0.2				
Temperature:	T ₂ =	290±10 K				
Covering factor:	f ₂ =	0.64±0.15				

Raban et al. 2008

- three blackbody Gaussians with offsets
- fit to 30 correlated fluxes and phases (ATs and UTs)
- interpretation as inner wall of a dusty cone

Lopéz Gonzaga et al. 2014

Tristram et al. 2007

Tristram et al. 2014

Circinus: interpretation

Fischer et al. 2013

3. Individual sources: Centaurus A

Burtscher et al. 2013

Meisenheimer et al. 2007

unresolved flux: synchrotron emission from the jet

15/01/2014

Hönig et al. 2013

3. Individual sources: Comparison

	<u>Circinus</u>	<u>NGC1068</u>	<u>NGC424</u>	<u>NGC3783</u>
polar extension:	yes	yes	yes	yes
size (extended)	1.6 pc	3.0 pc	2.0 pc	4.2 pc
disk + extended:	yes	yes	?	possibly
disk contribution	20%	15 – 40%	?	10 – 40%
maser disk:	yes	yes	no	no
hot dust:	no	hot disk	?	yes
silicate feature:	gets shallower	gets deeper	no change	no change

4. Surveys: the AGN Large Programme

- 23 detections
- 9 non-detections
- find point-source components plus (over-)resolved emission

Burtscher et al. 2013

4. Surveys: the AGN Large Programme

4. Surveys: the AGN Large Programme

♦ large scatter in the AGN size luminosity relation

4. Surveys: type 1 sources

bossible change in the radial dust distribution

Great step forward by VLTI interferometry:

- size-luminosity relation of AGN tori:
 - centrally heated dust parsec-sized,
 - quite large scatter,
 - no difference between type 1 and type 2 sources
- Point source component
- disk-like + polar elongated dust component

Wishlist:

- Imaging
- Higher sensitivity
- Longer baselines