VLTI Community Days, January 15-16, 2014, Grenoble, France

Interferometric sensitivity at VLTI

Romain G. Petrov LAGRANGE Laboratory OCA-UNS-CNRS

With:

S. Lagarde, F. Millour, M. Vannier, A. Ziad, A., Meilland, S. Rakshit... (LAGRANGE) T. Elhalkouj (UCA Marrakech)

January 16, 2014

Interferometric sensitivity

Grenoble 2014

R.G. Petrov et al.

1

Introduction

- We need higher limiting magnitudes
- We seem stalled around K=10-11 with the UTs
- We can
 - Use off-axis tracking in very special cases ?
 - Wait for detectors to improve ?
 - Say that improving sensitivity is useless because fainter targets are too unresolved ?

But we can also progress rapidly on:

- Incoherent and coherent data processing
- Cophasing and coherencing
- Off axis tracking, sky coverage and isopistonic angle

There are science programs at higher magnitudes, for *existing* and future interferometers!

...

Current « common sense »

- We process frame by frame (and channel by channel in AMBER) and average the results
 - Or we average coherent frames and channels with a FT
 - This is limited to SNR by frame and channels <~3
- The limiting magnitude is set by the capacity to detect fringes in one frame (~coherence time), or by the Fringe Tracker
- The limiting magnitude of any higher spectral resolution is set by the Fringe Tracker limit
- Fringe Tracker on sources fainter than K=10-11 is very uncertain
- Fainter sources would need much longer baselines.

Coherent, incoherent, intermediate

• Coherent integration of short exposures

$$\frac{C}{\sigma_{C}} \simeq \frac{n_{*}t_{DIT}V}{\sqrt{n_{T}n_{*}t_{DIT} + n_{p}\sigma_{RON}^{2} + n_{T}n_{th}t_{DIT}}} \sqrt{n_{\lambda}\frac{T_{EXP}}{t_{DIT}}}$$

- Useless if SNR_{frame}<1
- Incoherent integration
 - When SNR_{frame}<1,
 varies like SNR² n^{1/2}
 - Should be very inefficient

$$\frac{|C|^2}{\sigma_{|C|^2}} = \frac{\left(\frac{C}{\sigma_C}\right)^2}{\sqrt{N\left[1+2\left(\frac{C}{\sigma_C}\right)^2\right]}}$$

BUT

Blind mode observing and 2DFT processing

Interferometric sensitivity

<|2DFT|²> processing

- <|2DFT|²> processing is:
 - A coherent addition of all spectral channels
 - An incoherent addition of 2D power or cross-spectra

- <|2DFT|²> would increase coherence time
- Higher order processing
 - Rebuilt a posteriori the successive derivatives of the piston track

Fringe peak monitoring and piston tracking AMBER K=10

TF2D measurement of complex coherent flux

 \Rightarrow Cross spectrum at σ yields:

$$W_{\sigma}^{ij}(v) = n_i n_j \Omega^{ij}(\sigma) \widehat{\Omega}^{ij}(v - p_a) e^{-2i\pi\sigma(v - p_a)}$$

 \Rightarrow Where $\Omega^{ij}(\sigma)$ is the "object" to be measured and calibrated:

$$\Omega^{ij}(\sigma) = n(\sigma) V_*^{ij}(\sigma) V_I^{ij}(\sigma) O_*^{ij}(\sigma) e^{\left[i\phi_*^{ij}(\sigma) + i\phi_I^{ij}(\sigma) + 2ip_c(\sigma)\sigma\right]}$$

 \Rightarrow if we have the **Exact** measure of piston p_a :

$$W_{\sigma}^{ij}(\nu = p_a) = n_i n_j \Omega^{ij}(\sigma) \widehat{\Omega}^{ij}(0) = n_i n_j \Omega^{ij}(\sigma) \int \Omega^{ij}(\sigma) \, d\sigma$$

January 16, 2014

performance of <|2DFT|²> processing

With AMBER/UTs MR current detector: Ron=11e⁻

- 1: standard frame by frame processing (P2VM)
- 2: <|2DFT|²> processing achieved with current AMBER (10s incoherent integration)
- 3: <|2DFT|²> potential with corrected AMBER SFK
- 4: <|2DFT|²> potential with OASIS bypass of SFK
- (1) and (2) are tuned on actual measures, (3) and (4) are deduced from (1) and (2) from transmission and number of pixels update

Optimizing spectro-interferometry for 2DFT

K=4

K=8.5 K=10

Saving pixels in spectro-interferometry

32 pixels/channel

12 pixels/channel

4 pixels/channel

January 16, 2014

Interferometric sensitivity

Grenoble 2014

R.G. Petrov et al.

performance of <|2DFT|²> processing

- 1: current standard AMBER processing, MR=1500
- 2: <|2DFT|²> processing with current AMBER
- 3: <|2DFT|²> processing with improved AMBER but current detector (11e⁻)
- 4: <|2DFT|²> processing with new instrument and SELEX detector (3e⁻)

BLRs: a program for high magnitudes in MR

1 h of observation, R=1500

X : differential phase from R_{in} diameter (IR reverberation mapping, extrapolated)

O : differential phase from RM radius (H_{β} RM extrapolated)

differential visibility from R_{in} and R_{BLR}<<R_{in}

OASIS

Optimizing Amber for Spectro Interferometry and Sensitivity

0.0-

Grenoble 2014

0.0-111111111

R.G. Petrov et al.

4T spectro-interferometer with only 8 pixels / spectral channel for all baselines

January 16, 2014

Interferometric sensitivity

Grenoble 2014

R.G. Petrov et al.

Cophasing

- When cophasing is possible, it improves strongly accuracy of measures
- We can improve:
 - The control law
 - Kalman filtering
 - Better exposure time optimization from better atmospheric optics knowledge
 - The injection of vibration information in the fringe tracking loop
 - Better cophasing-coherencing transitions
 - The concept
 - Minimize the number of pixels
 - Break the conflict between number of apertures and sensitivity (flux divided by N_T -1 or total noise of $N_T(n_*+n_{th})$ flux).
 - Two proposals in that direction
 - The Nova Fringe Tracker
 - Hierarchical Fringe Tracking

Hierarchical cophasing:

the 2T spatial filter

- When T1 and T2 are cophased, « all » the flux is transmitted.
- The beam C behaves like a spatial filtered beam from a single cophased telescope
- When T1 and T2 are out of phase, the flux in A, B and C allows to compute the piston
- All the flux from T1 and T2 is used to cophase them.

Hierarchical cophasing

• Each cophased pair behaves like a single telescope

Hierarchical Cophasing

- For the first level, the SNR is the maximun one for 2T
- For the lower pairs, the SNR increases if C>0.5(A+B+C)
- Each FT drives one delay line

 ${}^{2}A_{12}, {}^{2}B_{12}, {}^{2}C_{12} \rightarrow {}^{2}\delta_{12}, {}^{1}C_{12}, {}^{1}C_{34}$ ${}^{i}A_{lk}, {}^{i}B_{lk}, {}^{i}C_{lk} \rightarrow {}^{i}\delta_{lk}, {}^{i-1}C_{lk}, {}^{i-1}C_{lk}$ $L_{1} = 0$ $L_{2} = L_{1} + {}^{0}\delta_{12}$ $L_{3} = {}^{1}\delta_{12}$ $L_{4} = L_{3} + {}^{0}\delta_{34}$ $L_{5} = {}^{2}\delta_{12}$ $L_{6} = L_{5} + {}^{1}\delta_{34}$

 $L_7 = L_6 + 0\delta_{67}$

It might work

- C transmits 70 to 80%
 when cophased
- C, B-A, etc... can be set in quadrature
- The typical width of C(p) whith J-H-K is 8 µm → good coherencing
- Research program with UCA Marrakech

January 16, 2014

Grenoble 2014

R.G. Petrov et al.

Sky coverage

• FT variance = $(\lambda/n)^2$

(*n* from required accuracy, *n*=6 enough for differential measures)

= Fundamental noise variance

(from nb pixels, flux/baseline, exposure time, bandpass)

+ Loop error

(dominated by the integration and the lag between measure and correction)

+ Anisopistonic error

(set by the local seeing, 10 as at Paranal for $\lambda/10$)

Optimum exposure time in Paranal, For a GRAVITY-PIONIER FT, after vibration correction, is **3 ms < \tau < 7ms** r0=0.1*4.3 (K) ; L0 =17 m ; D=18m10m/;s ; Ng Base =130m ; Lambd a =2.2 micron ; RapStr Transmission=0.01 ; =Bar4de micronK=10

Sky coverage

• FT variance = $(\lambda/n)^2$ (n from required accuracy, n=6 enough for differential measures) Fundamental noise variance (nb pixels, flux/baseline, exposure time, bandpass)

- + Loop error (dominated by the integration and the lag between measure and correction)
- + Anisopistonic error (set by the local seeing, ~10 as at Paranal for $\lambda/10$)

January 16, 2014

Sky coverage

(preliminary numbers)

Fringe Tracker	caracteristics	K limit	Sky coverage at GP (10 as)	Sky coverage at 20° G Latitude
GRAVITY-PIONIER	4 px, 2*N/3 phot, K band, 5 channels, 1% transmission, <mark>1 ms</mark>	10.5	0.4%	16%
Nova FT	2 px, 2*N/2 phot, J-H-K band, 3 channels, 1% transmission, <mark>1 ms</mark>	12	5%	>100%
Hierarchical FT	4 px, 2*0.7N phot, J-H- K band, 1 channel, 1% transmission, <mark>1 ms</mark>	12.5	~7%	>100%

Conclusion

- Sensitivity of spectro-interferometry is not limited by Fringe Tracking
- Optimized, simple, spectro-interferometric instruments could achieve K>14 with UTs and K>10 with Ats
- nDFT processing can be applied to PIONIER and GRAVITY and go beyond FT limit
- Cophasing improves the accuracy when available
- There is room for progress in FT and sky-coverage for off axis tracking
- We should maintain a very active R&D program on FT on and off axis