IPAG Institut de Planétologie et d'Astrophysique de Grenoble PIONIER and VLTI Community days - Grenoble

Imaging Young Stellar Objects

 J. Kluska, F. Malbet, J.-P. Berger, J.-B. Le Bouquin, B. Lazareff, M. Benisty, J. Monnier, F. Baron, E. Thiébaut, F. Soulez, C. Dominik, A. Isella, A. Juhasz, S. Kraus, R. Lachaume, F. Ménard, R. Millan-Gabet, C. Pinte, M. Tallon, W.-F. Thi, G. Zins.

What are we imaging ?

- YSO :
 - Complex environment
 - Model independent
 - H > 6
- PIONER :
 - 4 Telescopes / 3 config.
 - Sensitive enough..

What are we imaging ?

- YSO
- Near infrared
- At least 2 components
 - The star
 - Its environment (~1500K)

Malfait et al. 1998

Interferogram

- The effect on the interferogram will be :
- <u>Monochromatic</u> approach is not appropriate

Real data HR5999

Benisty et al. 2011

Chromatic image reconstruction

- Parametric and image reconstruction part
- Modeling the fluxes

$$f_{\text{tot}}(\lambda)\widetilde{V}_{\text{tot}}\left(\frac{B}{\lambda},\lambda\right) = f_*(\lambda)\widetilde{V}_*\left(\frac{B}{\lambda}\right) + f_{\text{env}}(\lambda)\widetilde{V}_{\text{env}}\left(\frac{B}{\lambda}\right)$$
$$\widetilde{V}_{\text{tot}}\left(\frac{B}{\lambda},\lambda\right) = \frac{f_*(\lambda) + f_{\text{env}}(\lambda)\widetilde{V}_{\text{env}}\left(\frac{B}{\lambda}\right)}{f_*(\lambda) + f_{\text{env}}(\lambda)}$$

Chromatic image reconstruction

IPAG

Institut de Planétologie et d'Astrophysique de Grenoble

Images from PIONIER

- PIONIER survey of Herbig Ae/Be stars
- 31 nights of observation
- 55 stars observed
- ~12 imaging targets

IPAG

stitut de Planétologie et d'Astrophysique de Grenoble

Images from PIONIER

IPAG

nstitut de Planétologie et d'Astrophysique de Grenoble

• Only dust seen in H band ?

Images from PIONIER

13/01/2014

IPAG

Institut de Planétologie et d'Astrophysique de Grenoble

• HD100546

Model of an accretion disk + inner rim

• HD100453

IPAG

Institut de Planétologie et d'Astrophysique de Grenoble

J. Kluska - IPAG - Imaging of YSO

• HD100453

IPAG

Institut de Planétologie et d'Astrophysique de Grenoble

1.0e-03 -9.0e-04 10 - 8.0e-04 -7.0e-04 -6.0e-04 Δδ (mas) 0 * -5.0e-04 -4.0e-04 -3.0e-04 -2.0e-04 -10 - 1.0e-04 1.0e-03 -9.0e-04 10 -8.0e-04 -7.0e-04 -6.0e-04 ۵ð (mas) 0 -5.0e-04 -4.0e-04 -3.0e-04 -2.0e-04 -10 - 1.0e-04 0.0e+00 -10 10 0 $\Delta \alpha$ (mas)

• HD100453

IPAG

Institut de Planétologie et d'Astrophysique de Grenoble

1.0e-03 -9.0e-04 10 - 8.0e-04 -7.0e-04 -6.0e-04 ∆ð (mas) -5.0e-04 -4.0e-04 -3.0e-04 -2.0e-04 -10 -1.0e-04 0.00+00 1.0e-03 -9.0e-04 10 -8.0e-04 -7.0e-04 6.0e-04 ۵ð (mas) -5.0e-04 -4.0e-04 -3.0e-04 -2.0e-04 -10 - 1.0e-04 0.0e+00 10 0 -10 $\Delta \alpha$ (mas)

To conlude...

- PIONIER
 - Enough sensitivity to explore YSO
 - 4T imaging \rightarrow 3 x $\frac{1}{2}$ nights over 2 weeks
- Imaging
 - PIONIER inspired new imaging techniques
 - Need to constrain the sellar to total flux ratio
- YSO
 - Optically thick inner accretion disk ?
 - Azimuthal variations in the disk ? Variability ?