THE VLTI+CHARA CEPHEID PROGRAM

THE CEPHEID PROGRAM

THE CEPHEID PROGRAM

 A long-term effort started in 2001 at VLTI (VINCI, then PIONIER) and in 2004 at CHARA

THE CEPHEID PROGRAM

- A long-term effort started in 2001 at VLTI (VINCI, then PIONIER) and in 2004 at CHARA
- Three "sub-programs":
 - I. Distances (B-W): FLUOR, PIONIER, VEGA
 - 2. Circumstellar envelopes: FLUOR, VEGA
 - 3. Cepheids in binary systems: MIRC, PIONIER

Gives the radius and the distance of a pulsating star

Gives the radius and the distance of a pulsating star Based on two types of data: I. Radial velocity from <u>spectroscopy</u>

Gives the radius and the distance of a pulsating star Based on two types of data: I. Radial velocity from <u>spectroscopy</u>

2. Angular size from interferometry

I. SPECTROSCOPY

I. SPECTROSCOPY

Spectroscopy gives the *variation* in linear radius of the star from:

$$\delta R(T) = -p \int_0^T v_{\rm rad}(t) \, dt$$

Spectroscopy gives the *variation* in linear radius of the star from:

$$\delta R(T) = -p \int_0^T v_{\rm rad}(t) \, dt$$

 $p = \text{projection factor} \\ = V_{\text{puls}} / V_{\text{rad}} \\ \sim 1.3 \\ \text{measured on } \delta \text{ Cep + models} \\ \end{cases}$

2. INTERFEROMETRY

2. INTERFEROMETRY

2. INTERFEROMETRY

Gives the angular size variation of the star

Interferometry

The distance d is given by the relation: $d = \frac{2\delta R(T)}{\delta\theta(T)} = \frac{-2kp \int_0^T v_{\rm rad}(t) dt}{\theta_{\rm UD}(T) - \theta_{\rm UD}(0)}$

Interferometry

The distance d is given by the relation: $d = \frac{2\delta R(T)}{\delta\theta(T)} = \frac{-2kp \int_0^T v_{\rm rad}(t) dt}{\theta_{\rm UD}(T) - \theta_{\rm UD}(0)}$

Interferometry

The distance *d* is given by the relation:

$$d = \frac{2\delta R(T)}{\delta\theta(T)} = \frac{-2kp \int_0^T v_{\rm rad}(t) dt}{\theta_{\rm UD}(T) - \theta_{\rm UD}(0)}$$

Interferometry

The distance *d* is given by the relation:

$d = 2\delta R(T)$	$-2kp\int_0^T v_{\rm rad}(t)dt$
$\delta \theta(T)$	$\theta_{\rm UD}(T) - \theta_{\rm UD}(0)$

Interferometry

The distance d is given by the relation:

$d = 2\delta R(T)$	$-2kp\int_0^T v_{\rm rad}(t)dt$
$\delta \theta(T)$	$\theta_{\rm UD}(T) - \theta_{\rm UD}(0)$

k = limb darkening correction (from models)= $\theta_{\text{UD}} / \theta_{\text{LD}}$ ~ 0.94 in visible, 0.98 in IR

Interferometry

The distance d is given by the relation:

$$d = \frac{2\delta R(T)}{\delta\theta(T)} = \frac{-2kp\int_0^T v_{\rm rad}(t)\,dt}{\theta_{\rm UD}(T) - \theta_{\rm UD}(0)}$$

k = limb darkening correction (from models)= $\theta_{\text{UD}} / \theta_{\text{LD}}$ ~ 0.94 in visible, 0.98 in IR

δ CEP : A MEASUREMENT OF p

δ CEP : A MEASUREMENT OF p

Mérand et al. 2005, A&A 438, L9

δ CEP : A MEASUREMENT OF p

Mérand et al. 2005, A&A 438, L9

δ CEP : A MEASUREMENT OF p

p-factor = 1.27 ± 0.06 , with d=274 ± 11 pc from HST-FGS

Mérand et al. 2005, A&A 438, L9

Distance: 472 ± 18 pc (4%)

Distance: $472 \pm 18 \text{ pc} (4\%)$ for p = 1.27 and k = 0.983

KAPPA PAV (PIONIER, P91)

Breitfelder et al. (2014, in prep.)

KAPPA PAV (PIONIER, P91)

Breitfelder et al. (2014, in prep.)

KAPPA PAV (PIONIER, P91)

Breitfelder et al. (2014, in prep.)

ηAQL

Mérand et al. 2014, in prep.

CEPHEIDS OBSERVED BY INTERFEROMETRY

CEPHEIDS OBSERVED BY INTERFEROMETRY

[Polaris] (3.97 d) δ Cep (5.36 d) X Sgr (7.01 d) η Aql (7.17 d) W Sgr (7.59 d) β Dor (9.84 d) L Car (35.6 d) [RS Pup] (41.4 d)

CEPHEIDS OBSERVED BY INTERFEROMETRY

[Polaris] (3.97 d) δ Cep (5.36 d) X Sgr (7.01 d) η Aql (7.17 d) W Sgr (7.59 d) β Dor (9.84 d) L Car (35.6 d) [RS Pup] (41.4 d)

24 stars, with 22 stars suitable for IBW distance P93 program with PIONIER (5 stars) + VEGA (5 stars)

CEPHEIDS IN BINARIES

- Binary systems are very useful to derive masses and distances
- Cepheids are extremely bright (10³ 10⁵ Lsun), companions are difficult to detect
- Only a handful discovered using UV spectroscopy (essentially by Nancy Evans et al.)
- Most systems are unresolved SBI, except Polaris and distant companions on multi-century orbits
- Survey with CHARA/MIRC and VLTI/PIONIER: the companions of VI334 Cyg and AX Cir have been spatially resolved

AX CIR (VLTI/PIONIER)

Primary:

- Classical Cepheid
- Puls. P=5.27 days
- d ~ 500 pc
- H = 3.85

AX CIR (VLTI/PIONIER)

Gallenne et al. A&A 561, L3 (2014)

0: 1	2013-07-11	2012-07-14
Single star model		2012-07-14
$\theta_{\rm UD}$ (mas)	0.770 ± 0.016	0.931 ± 0.010
HED (mas)	0.787 ± 0.016	0.951 ± 0.019
χ_r^2	1.45	1.00
Binary model		1.09
$\theta_{\rm UD}$ (mas)	0.726 ± 0.020	0.821 + 0.022
θ_{LD} (mas)	0.742 ± 0.020	0.821 ± 0.022 0.839 ± 0.022
f (%)	0.75 ± 0.17	0.009 ± 0.023
$\Delta \alpha$ (mas)	6.421 ± 0.198	6153 ± 0.155
$\Delta o (mas)$	-28.366 ± 0.366	-28.584 + 0.220
C,	1.17	0.72

Gallenne et al. A&A 561, L3 (2014)

AX CIR (VLTI/PIONIER)

Gallenne et al. A&A 561, L3 (2014)

0. 1	2013-07-11	2012-07-14
Single star mod	del	2012 07-14
$\theta_{\rm UD}$ (mas)	0.770 ± 0.016	0.931 ± 0.019
OLD (mas)	0.787 ± 0.016	0.952 ± 0.020
Xr Binomi mad 1	1.45	1.09
Am (mas)	0.000	
hen (mas)	0.726 ± 0.020	0.821 ± 0.022
$f(\mathcal{G})$	0.742 ± 0.020	0.839 ± 0.023
Arr (mae)	0.75 ± 0.17	0.90 ± 0.10
$\Delta\delta$ (mas)	6.421 ± 0.198	6.153 ± 0.155
2 ²	-28.366 ± 0.366	-28.584 ± 0.229
Lr.	1.17	0.70
		0.72
S	Secondary	•
• E	Secondary 66V dwarf	•
S • E • (Secondary 66V dwarf Drbit 17.9 yea	• ars
• E • C • S	Secondary 66V dwarf Drbit 17.9 yea ep. ~ 30 mas	e ars

VI334 CYG (CHARA/MIRC)

Gallenne et al. 2013, A&A, 552, A21

VI334 CYG (CHARA/MIRC)

Separation = 8 mas, Contrast (H) = 3.1%, Period = 5.3 yr Gallenne et al. 2013, A&A, 552, A21

 HST/FGS astrometry and STIS spectroscopy in Cycle 21 to derive the distance and masses to 1%