New insights into Eta Carinae with PIONIER

Jose Groh (Geneva Observatory, Switzerland)

Collaborators

FNSNF

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

O. Absil (Liege), JP Berger (ESO), M. de Becker (Liege), JB Le Bouquin (Grenoble), H. Sana (STScI)

Location of stars in the HR diagram

Location of stars in the HR diagram

Eta Carinae and the Homunculus nebula

Ejected mass: ~10 to 20 M_{\odot} from high-res MIR imaging (Smith+ 03)

18"

Eta Carinae and the Homunculus nebula

Central Source: L ~ 5 x 10⁶ L_☉ M > 100 M_☉ M ~ 8 x10⁻⁴ M_☉/yr vinf ~ 420 km/s (Hillier+ 01, Groh+ 12)

Needs interferometry to probe the inner 20 mas:

- mass loss
- rotation
- binarity

Strong stellar wind causes the photosphere to be formed in the wind

Strong stellar wind causes the photosphere to be formed in the wind

Eta Car

Cphot (set by free-free emission)

Sun

 Chydr

 Atmosphere

Stellar Wind

Strong stellar wind causes the photosphere to be formed in the wind

Eta Car (M/2)

Sun

Cphot (set by free-free emission)

hydr

Atmosphere

Stellar Wind

Strong stellar wind causes the photosphere to be formed in the wind

Eta Car (M/2)

Sun

\Capital Phot (set by free-free emission)

Eta Carinae mass loss

(van Boekel+03; Weigelt+07; Kervella 07; Groh+10, 12)

Eta Carinae mass loss

(van Boekel+03; Weigelt+07; Kervella 07; Groh+10, 12)

Mass-loss rate in 2002-2005: ~ 8.4 x 10⁻⁴ Msun/yr

Variability in Eta Carinae mass loss?

(Mehner+10, 12, Corcoran+10, Gull+11, Groh+12, Teodoro+12, Madura+13)

Mass-loss rate reduction by a factor of 2 in the last 10 yr?

Eta Car PIONIER data

Data taken by O. Absil on 2012 Mar and 2013 Feb 7 spectral channels across the H band

Probing changes in mass loss with PIONIER

Data taken by O. Absil on 2012 Mar and 2013 Feb

Probing changes in mass loss with PIONIER

Data taken by O. Absil on 2012 Mar and 2013 Feb

change in Eta Car's mass-loss rate.

Rotation: elongation of the K-band photosphere (van Boekel+ 03; Kervella 07; Weigelt+07; Groh+10)

van Boekel+03

Rotation: elongation of the K-band photosphere

(van Boekel+ 03; Kervella 07; Weigelt+07; Groh+10)

Homunculus i=41°;PA=131°

Geometric model PA~I34°; b/a=I.25

Eta Car A rapid rotator: rot. axis aligned with the Homunculus polar axis

Rotation: elongation of the K-band photosphere (van Boekel+ 03; Kervella 07; Weigelt+07; Groh+10)

Rad. Transf. VINCI+AMBER Homunculus **Geometric model** $v_{rot}/v_{crit}=0.77$ to 0.92 $i=41^{\circ}; PA=131^{\circ}$ PA~134°; b/a=1.25 i=60° to 90° PA=108° to 142° K-band image, W=0.85, i=75°, PA=130° 4.0 (b) offset (mas) 2.0 0.0 С Ш С -2.0-4.04.0 2.0 0.0 -2.0 -4.0 RA offset (mas) 1/1max Eta Car A **Eta Car A** rapid rotator: rotation axis rapid rotator: rot. axis aligned misaligned with the Homunculus with the Homunculus polar axis Groh+10

Orbit: $i=139^{\circ}$, $\omega=243^{\circ}$, PA=312°, e=0.9, P=5.54 years

(Damineli 96; Madura 12)

apastron

*100

Orbit: i=139°, ω=243°, PA=312°, e=0.9, P=5.54 years (Damineli 96; Madura 12)

+100

Orbit: i=139°, ω=243°, PA=312°, e=0.9, P=5.54 years (Damineli 96; Madura 12)

+100

Around periastron

Orbit: i=139°, ω=243°, PA=312°, e=0.9, P=5.54 years (Damineli 96; Madura 12)

+100

Around periastron

wind-wind collision zone

'bore hole' and free-free emission from the wind-wind collision

3-D isodensity surface

'bore hole' and free-free emission from the wind-wind collision

3-D isodensity surface

carving of the wind, exposing the hotter, inner parts ('bore hole' effect, Madura & Owocki 2010)

'bore hole' and free-free emission from the wind-wind collision

3-D isodensity surface

carving of the wind, exposing the hotter, inner parts ('bore hole' effect, Madura & Owocki 2010) free-free emission from the dense postshocked primary wind compressed along the shock cone walls

'bore hole' and free-free emission from the wind-wind collision

3-D isodensity surface

carving of the wind, exposing the hotter, inner parts ('bore hole' effect, Madura & Owocki 2010)

K-band continuum image

free-free emission from the dense postshocked primary wind compressed along the shock cone walls

'bore hole' and free-free emission from the wind-wind collision

3-D isodensity surface

carving of the wind, exposing the hotter, inner parts ('bore hole' effect, Madura & Owocki 2010)

(Groh et al. 2010a)

free-free emission from the dense postshocked primary wind compressed along the shock cone walls

Both rotation and binary effects explain the previous data Near-infrared: geometry of the K-band continuum emitting region

Binary model fits data as well as single, rapid-rotating star

Rotation as seen by PIONIER

Data taken by O. Absil on 2012 Mar (close to apastron) at 1.875 micron

Variation of visibility as a function of PA

Rotation as seen by PIONIER

Data taken by O. Absil on 2012 Mar (close to apastron) at 1.875 micron

Variation of visibility as a function of PA

PIONIER data reveals a rapid rotator

Data taken by O. Absil on 2012 Mar -- only spectral channel 6 (1.875 micron)

Variation of visibility as a function of PA

Binary effects not enough to fit PIONIER data

Data taken by O. Absil on 2012 Mar (close to apastron) at 1.875 micron

Preliminary image reconstruction: all data

by JB Le Bouquin

Preliminary image reconstruction: all data

by JB Le Bouquin

Preliminary image reconstruction: short+inter

by JB Le Bouquin

beam nearly circular

Preliminary image reconstruction: short+inter

by JB Le Bouquin

beam nearly circular

Preliminary image reconstruction

Preliminary image reconstruction

- no changes in Mdot over last 15 years;

rapidly-rotating primary star (~80% critical speed) seem at i~70-90deg (misaligned with Homunculus);
no strong binary effects (WWC) around apastron. IAU SYMPOSIUM 307

NEW WINDOWS ON MASSIVE STARS ASTEROSEISMOLOGY, INTERFEROMETRY AND SPECTROPOLARIMETRY

GENEVA • SWITZERLAND 23 • 27 JUNE 2014

SOC

Dave Arnett (USA) Lydia Cidale (Argentina) Emily Levesque (USA) Marco Limongi (Italy) Phil Massey (USA) André Maeder (Switzerland) Georges Meynet (Chair, Switzerland) **Coralie Neiner (France)** Arlette Noels (Belgium) Stan Owocki (USA) Raphael Hirschi (U.K.) Thomas Rivinius (Chile) Hideyuki Saio (Japan) Philippe Stee (co-Chair, France) **Rich Townsend (USA)** Gregg Wade (Canada)

LOC

Patrick Eggenberger Sylvia Ekström Anahí Granada José Groh Lionel Haemmerlé Georges Meynet Giovanni Privitera Gilles Simond Chantal Taçoy

http://obswww.unige.ch/IAU307/