Achernar resolved by stellar interferometry

PIONIER community days Grenoble - France, 2014 January 13-14 Armando Domiciano de Souza Observatoire de la Côte d'Azur – Lab.Lagrange – France

Main collaborators (France, Brazil, ESO)

P. Kervella
D. Moser Faes (PhD)
J.-B. Lebouquin
A. Mérand
A. Carciofi
M. Rieutord
F. Espinosa Lara

F. Millour G. Dalla Vedova (PhD) J. Zorec M.Hadjara (PhD) E. Janot-Pacheco F. Vakili PIONIER team

The fast-rotating Be star Achernar

Some information on Achernar: ♦B3-6Vpe star \diamond V=0.5 (brightest Be star) ♦M ~ 6 Msun \diamond d=42.75 pc (closest Be star) \diamond Mean T_{eff}~15000K ♦ V sini i ~220-400 km/s (wide) range of values in the litterature) \diamond Strong rotation flattening

Domiciano de Souza, Kervella et al. 2003 (VLTI/VINCI Sep-Nov/2002 data)

3

The fast-rotating Be star Achernar

Study Achernar as a fast-rotator but... keep in mind that this is star is also a:

◆Be star, episodic emission phases (variations at several time scales)
◆binary (several years period)
(Kervella, Domiciano et al., in prep.)
◆pulsating star (freq. ~ 0.7-0.8 c/d)

Fig. 16. H α DPS (dotted line with error bars) and qualitative intensity (dashed line and diamonds) variations between 1960 and 2002 from various authors: Jaschek et al. (1964); Andrews et al. (1966); Dachs et al. (1977, 1981, 1986, 1992); Hanuschik et al. (1988, 1996); and Vinicius et al. (2006).

Vinicius et al. 2006

Rapid rotation from interferometry

Rotational flattenning

(Roche approximation)

Gravity darkening

(von Zeipel effect)

CHARRON code (Domiciano de Souza et al. 2002, 2012, A&A) Numerical model for rotating stars

VLTI/PIONIER observations of Achernar

Some information on VLTI/PIONIER: Baselines from ~ 30 to 120 m Observations in 2011-2012 Nb of data points (V²+CP): ~ 1780

2011-08-06	4pts	v2= 67.0 +- 2.8%	nSpec=3
2011-09-22	10pts	v2= 67.2 +- 2.1%	nSpec=7
2011-09-23	9pts	v2= 69.8 +- 1.9%	nSpec=7
2012-09-16	9pts	v2= 69.1 +- 1.7%	nSpec=3
2012-09-17	3pts	v2=72.0 +- 3.1%	nSpec=3

Achernar's polarization x time

year

VLTI/PIONIER observations of Achernar

Domiciano de Souza, Kervella et al. 2014 (in prep.)

VLTI/PIONIER observations of Achernar

Domiciano de Souza, Kervella et al. 2014 (in prep.)

Best-fit CHARRON model to PIONIER data on Achernar $(\chi^2_{red}=1.8; MCMC \text{ fit method})$

Physical parameter	PIONIER/ VLTI (CHARRON)
Req (Rsun) Oeq (mas)	9.16±0.22 1.99±0.05
Req/Rp	1.35
Veq sin i (km/s)	260±7 (88%Vcrit)
PArot (deg)	36.9±0.4
β (gravity darkening)	0.17±0.01

Domiciano de Souza et al. 2014 (in prep.)

 $3.75{\textbf{\cdot}}10^3 \quad 6.31{\textbf{\cdot}}10^3 \quad 8.87{\textbf{\cdot}}10^3 \quad 1.14{\textbf{\cdot}}10^4 \quad 1.40{\textbf{\cdot}}10^4$

CHARRON model UBVJHK photometry also compatible with phtometric observations

Best-fit parameters of Achernar

Free parameters for	Best-fit values	Values computed
emcee fit with CHARRON model	from CHARRON model	with the ELR model ^a
Equatorial radius: R_{eq} (R_{\odot})	$9.163^{+0.034}_{-0.026}$	9.163
Equatorial rotation velocity : V_{eq} (km s ⁻¹)	$298.8_{-5.5}^{+6.9}$	298.9
Rotation-axis inclination angle: i (°)	$60.6^{+7.1}_{-3.9}$	_
Gravity-darkening coefficient: β	$0.166^{+0.012}_{-0.010}$	0.166/0.165 ^b
Position angle of the visible pole: PA_{rot} (°)	$216.9_{-0.4}^{+0.4}$	-
Derived parameters	Values	Values
Equatorial angular diameter: $\bigcirc_{eq} = 2R_{eq}/d$ (mas)	1.994	1.994
Polar radius: $R_{p}(\hat{R}_{\odot})$	6.780	6.780 (input)
$R_{\rm eq}/R_{\rm p}; 1 - R_{\rm p}/R_{\rm eq}$	1.3515; 0.2601	1.3515; 0.2601 (input)
Mean angular diameter: $\overline{\bigcirc}$ (mas)	1.773	1.773
$V_{\rm eq} \sin i ({\rm km s^{-1}})$	260.2	_
Critical rotation rate ^{<i>c</i>} : V_{eq}/V_c ; Ω/Ω_c	0.883; 0.980	0.883; 0.980
Keplerian rotation rate ^{<i>d</i>} : $\dot{V_{eq}}/V_k$; Ω/Ω_k	0.838; 0.838	0.838; 0.838
Polar temperature: T_{p} (K)	17 124	17 124 (input)
Equatorial temperature: T_{eq} (K)	12 673	12 696
Luminosity: $\log L/L_{\odot}$	3.4795	3.4676
Equatorial gravity: $\log g_{eq}$	2.7720	2.7725
Polar gravity: $\log g_p$	3.5607	3.5613
Rotation period: P_{rot} (h)	37.25	37.22
Rotation frequency: v_{rot} (d ⁻¹)	0.644	0.645

Observed x modeled F_{bol} and photometry of Achernar

Model UBVJHK photometry of Achernar compatible with phtometric observations (within 0.5-0.1 mag)

Catalogue or reference	U	В	V	J	Н	K	$F_{\rm bol} (10^{-9} {\rm W}{\rm m}^{-2})$
2MASS ^a				0.815 ± 0.254	0.865 ± 0.320	0.880 ± 0.330	
NOMAD Tycho-2 ^b		0.473	0.527				
Johnson et al. (1966)		0.32	0.47				
Code et al. (1976)							54.4 ± 4.3
Jaschek & Egret (1982)	-0.36	0.30	0.46				
Nazé (2009)							48.98
Best-fit model (Table 2)	-0.279	0.339	0.472	0.783	0.828	0.886	53.05

^{*a*} Cutri et al. (2003); Skrutskie et al. (2006).

^b Hog et al. (2000); Zacharias et al. (2005).

Gravity darkening: T_{eff} =const g_{eff}^{β}

Domiciano de Souza, Kervella et al. 2014 (in prep.)

Additional component in the data ?

Domiciano de Souza, Kervella et al. 2014 (in prep.)

Very weak if present:

•Weak flux: ~ 0.7% F_{star} •No clear elongation/orientation • χ^2_{red} =1.8 $\rightarrow \chi^2_{red}$ =1.6 •Could also be due to a different gravity darkening law ?

Comparing different instruments, wavelenghts, spectral resolutions, epochs: *a rich but delicate task*

Physical parameter	PIONIER/ VLTI (CHARRON)	AMBER/ VLTI (CHARRON)	VINCI/ VLTI (UD ellipse)
Req (Rsun) Oeq (mas)	9.16±0.22 1.99±0.05	11.6±0.3 2.45±0.09	>10.1 >2.13
Req/Rp	1.35	1.45	>1.41
Veq sin i (km/s)	260±7 (88%Vc)	292±10 (96%Vc)	N/A
PArot (deg)	36.9±0.4	34.9±1.6	41.6±1.4
β (gravity darkening)	0.17±0.01	0.2 (fixed)	0.25 (fixed)

Domiciano de Souza et al. 2003, 2012, 2014 (in prep.) Kervella & Domiciano de Souza 2006

Model UBVJHK photometry also compatible with phtometric observations

VLTI/AMBER differential phases on Achernar

VLTI/AMBER differential phases from 3 ATs measured in 2009.

Signature of rotation: "S" shape.

Nb of observations: 28x3 baselines

Angular size from differential phases: Domiciano de Souza et al. 2012, A&A

Be tween B and Be

Distinct radii from AMBER, PIONIER, and VINCI could be caused by a time changing small residual disc.

Be tween B and Be

The End

Thank you