

A PIONIER's View on Symbiotic and Related Stars

Henri M.J. Boffin, Nicolas Blind, Michel Hillen, J.-P. Berger, A. Jorissen, J.B. Le Bouquin, A. Mérand, J. Mikolajewska B. Lazareff & the PIONIER team

For the history buff

Fleming (1912)

HD catalogue – Stars with Peculiar Spectra, displaying bright emission lines

Merrill (1919)

R Aqr: bright [O III] nebular lines on top of a normal M giant spectrum

Merrill & Humason (1932)

3 new Stars with Combination Spectra: CI Cyg, RW Aqr, AX Per. In these, TiO bands of a M giant are blended with Balmer, He II, [O III] and [Ne III] emission lines

For the history buff

Merrill (1941)

Coined the term *Symbiotic Star* : a cool red giant and a small hot companion seem to live in general harmony (although with occasional disagreement; Kenyon 1986)

Oxpeckers eat the parasites off of large animals like this African buffalo. But they're also parasites themselves, keeping wounds open and picking at scabs. Natphotos/Digital Vision/ <u>Getty Images</u> howstuffworks.com

Spectrum of Symbiotic Star

SCHEMATIC SPECTRUM OF A SYMBIOTIC STAR

Defining a Symbiotic Star

Kenyon (1986):

1. Presence of absorption bands typical of late-type giants, e.g. TiO, H2O, CO, CN, VO, and absorption lines from CaI, CaII, FeI, NaI

2. Presence of strong emission lines of H and He, and either

- bright lines of ions with high ionisation potential (e.g. [O III])

- an A or F-type continuum with additional absorption lines from H I and He I (when in outburst)

Defining a Symbiotic Star

Boyarchuk (1969):

object should show irregular optical variability

Nussbaumer (1982):

the object cannot be simply classified as something else

"It can be said that every known symbiotic star has, at one time or another, violated all the classification criteria." (Kenyon 1986)

Binaries

 Current accepted model: Symbiotic stars are interacting binaries containing a cool giant (G, K, M) and an accreting hot star (main sequence or white dwarf)

Binaries

- About 40 symbiotic systems with orbital period known
- Orbital period: 100 1400 d
- Giant have larger mass-loss rates than single giants of the same spectral type: why?
- origin of mass transfer?

Binaries

 Symbiotic stars can be divided into two categories based on the nature of the components:

(a) a lobe-filling giant and a A-F main sequence star

(b) a white dwarf or subdwarf and a red giant losing mass in a stellar wind

WIND Mass Transfer

Example: q=3

Varying wind velocity with respect to orbital speed

Flows very different - from Bondi-Hoyle type (but with asymmetry) to very complex ones

v_w = 1.35

 $v_{w} = 0.10$

Nagae, Oka, Matsuda, Fujiwara, Hachisu, Boffin, 2004; See also Boffin & Anzer 1994; Theuns, Boffin & Jorissen 1996

SS Lep = HD 41511

- V = 5.0!
- M4 III star + A1 companion
- P = 260.3 d
- M giant is least massive of two : mass transfer reversal (Algol)
- The A star radius ~ 10 times A V radius : swollen by accretion?
- A star is rapidly rotating : spin accretion?

VINCI

Verhoelst et al. 2007, Welty et al. 1995, Jura et al. 2001

The system is surrounded by a circumbinary disc, probably fed by the RLOF, which thus appears to be non conservative

SS Lep before PIONIER

	System		A star	M star
<i>d</i> [pc]	279 ± 24^{a}	SpT	A1V ^b	M6III ^c
<i>P</i> [d]	260.3 ± 1.8 ^b	$T_{\rm eff}$ [K]	9000 c,d	3500 ^{c,d}
е	0.024 ± 0.005 ^b	θ [mas]	0.53 ± 0.02 ^c	3.11 ± 0.32 ^c
i	$30^{\circ} \pm 10^{\circ} c$	$R [R_{\odot}]$	~15 ^c	$110 \pm 30^{\ c}$
f(M)	0.261 ± 0.005 ^b	F [%]	11 ± 7^{c}	$60 \pm 50^{\ c}$
1/q	$4 \pm 1^{b,c}$	<i>M</i> [M _☉]	2~3 ^{<i>a,b</i>}	0.4~1 ^{<i>a,b</i>}

Notes. *d* is the distance, *P* the orbital period, *e* the eccentricity, *i* the inclination, f(M) the mass function, $q = M_M/M_A$ the mass ratio. For the stars, *SpT* is the spectral type, T_{eff} the temperature, θ the apparent diameter, *R* the linear radius, *F* the flux contribution at 2.2 μm , and *M* the mass. References: (a) Van Leeuwen 2007; (b) Welty & Wade 1995; (c) Verhoelst et al. 2007: (d) Blondel et al. 1993

AMBER & PIONIER

Table 2. VLTI Observation log of SS Lep for the AMBER andPIONIER observations.

Run A1

A2

A3

A4

P1

P2

P3

P4

Analysis

Image Reconstruction

PIONIER data - 2 month-span

SS Lep: Masses

	Before	Now
d [pc]	330 ± 70	279±24
M _A [M₀]	2~3	2.71 ± 0.27
M _M [M _☉]	0.35~1	1.3 ± 0.33
M _A /M _M	4±1	2.17 ± 0.35

Mass ratio smaller than initially thought! M giant initially more massive, M_M > 2.2 M_☉ → Lost at least 0.9 M_☉ → A star accreted at least 0.5 M_☉

Blind, Boffin, Berger+ 11

Roche lobe overflow?

	Before	Now
diameter \mathcal{O}_{M} [mas]	3.11 ± 0.32	2.208 ± 0.007
d [pc]	330 ± 70	279 ± 24
Ø _M [R₀]	220 ± 60	132 ± 5
Roche lobe filling		

Roche lobe overflow?

	Before	Now
diameter \mathcal{O}_{M} [mas]	3.11 ± 0.32	2.208 ± 0.007
d [pc]	330 ± 70	279 ± 24
Ø _M [R₀]	220 ± 60	132 ± 5
Roche lobe filling	140%	86%

Blind, Boffin, Berger+ 11

No Roche lobe overflow!

Mass Transfer

Are we in a transient phase of stable RLOF prior to CE phase?

Or is it the case of wind RLOF?

 $v_w \sim 5-15$ km/s, while $v_{orb} \sim 30$ km/s

But this requires invoking the CRAP mechanism to have enough mass loss in lifetime of star

A-star: Really fat or donutshaped?

From the SED, $R_A = 18 R_{\odot} >>$ typical radius of A star

If real, this may be due to a mass accretion at a rate ~ $5 \ 10^{-5} M_{\odot}$ /yr (Kippenhahn & Meyer-Hofmeister 1977) - high!

Is the A star really so fat? Break-up velocity for A star of this size is 186 km/s! But $v \sin i = 118$ km/s (Royer et al. 2002) If assume star rotates in plane of binary system $\rightarrow v = 196$ km/s!

A-star: Really fat or donutshaped?

If matter goes through L_1 point, one can compute the smallest radius of infalling material: initially: $r_{min} = 9 R_{\odot} >> 2 R_{\odot} (R_A \text{ std});$ now: $r_{min} = 20 R_{\odot} > R_A !$ Material does not hit the A star

A disc should form instead!

A-star: Really fat or donutshaped?

If matter goes through L_1 point, one can compute the smallest radius of infalling material: initially: $r_{min} = 9 R_{\odot} >> 2 R_{\odot}$ (RA std); now: $r_{min} = 20 R_{\odot} > R_A$! Material does not hit the A star

A disc should form instead!

Need data with higher resolution to probe if there is a disc around the A star!

Symbiotic and related stars

- We cannot always gather as much information as with SS Lep
- But there is still much to do
- In particular to address the...

"continually embarrassing problem of symbiotic systems"

Their radii estimated from ellipsoidal variations in the light curve are systematically discrepant by a factor of 2 from radii derived from rotation velocities (*v* sin *i*)!

"continually embarrassing problem of symbiotic systems"

Possible explanations (Mikolajewska 2007):

- the radius derived from v sin i is biased: no synchronism or the assumption of a spherical giant in combination with a simple limb-darkening law biases the v sin i determination
- The Roche potential used for the ellipsoidal variability needs to be adapted by including radiation effects, e.g., Schuerman 72, Dermine+ 09
- The red giant atmosphere may be very extended and stratified so that the different methods probe different radii, due, e.g. to an extended atmosphere or a stellar wind filling the Roche lobe (cf SS Lep).

PIONIER mini-survey

089.D-0527 PI: M. Hillen

 Table 1. Measured diameter of our target stars.

Star designation		Date	Diameter	Error	$\chi^2_{\rm red}$
			(mas)	(mas)	
V1472 Aql	HD 190658	2012-07-03	2.33	0.03	0.82
AP Psc	HD 352	2012-08-13	1.49	0.02	2.48
V1261 Ori	HD 35155	2012-03-03	2.25	0.08	0.87
ER Del	_	2012-08-13	0.61	0.04	0.80
FG Ser	-	2012-07-03	0.83	0.03	0.69
		2012-08-13	0.94	0.05	0.26
AG Peg	HD 207757	2012-08-13	1.00	0.04	1.31

Boffin, Hillen, Berger+, submitted

$$\sigma^2 = N_{\rm sp}\,\sigma_{\rm litpro}^2 + 0.0001\,\Phi^2$$

Visibilities

Can generally be fitted with a simple uniform disc

Boffin, Hillen, Berger+, submitted

Adding background

Fig. 12. Reduced χ^2 maps for HD 190658: shown is the reduced χ^2 (logarithmic scale) as a function of the angular diameter (x-axis) and the relative flux level of the background (y-axis) based on our PIONIER data. These maps were computed using LITpro assuming a uniform disc plus background model. It appears clearly that the minimal reduced χ^2 corresponds to the model without any added background.

Methodology

- Diameter from PIONIER data (in mas)
- The Hipparcos distance (when available) \rightarrow physical radius (in R_{\odot})
- If no Hipparcos distance, use R-M-L relation for giants
- Solution Section Section Control Section C
- From spectroscopic binary mass function, f(m), can relate M_G to M_c for given inclination
- From orbital period and masses, get semi-major axis and thus Roche lobe radius

HD 190658 : M2.5 III

- P = 199 d and e ≤ 0.05 → second shortest orbital period among M giants
- ❀ Ellipsoidal variations (Samus 07, Tabur+ 09)
- It is a "sister case" of SS Lep
- $\text{ For } 0.8 < M_G < 3 M_{\odot}, \ 0.4 < M_c < 0.9 M_{\odot}, \ R_L \sim 73-110 R_{\odot}$
- ↔ Hipparcos parallax π = 7.92 ± 1.07 mas (van Leeuwen 07)
 → radius = 31.6 ± 4.3 R_☉
 → R/R_I ~ 0.3 0.4

HD 190658 : M2.5 III

- Ellipsoidal variations (Samus 07, Tabur+ 09)
- It is a "sister case" of SS Lep
- $\text{ For } 0.8 < M_G < 3 M_{\odot}, \ 0.4 < M_c < 0.9 M_{\odot}, \ R_L \sim 73-110 R_{\odot}$
- Hipparcos parallax π = 7.92 ± 1.07 mas (van Leeuwen 07)
 → radius = 31.6 ± 4.3 R_☉
 → R/R_L ~ 0.3 0.4
 But system shows ellipsoidal variations!

HD 190658 : M2.5 III

- D. Pourbaix: reprocessing of Hipparcos data taking into account the orbital motion: π = 2.4 ± 1.0 mas!
 System is 3 times further away!
- This leads to $R=104 \pm 56 R_{\odot}$
- $R/R_L \sim 0.43 1$
- T_{eff} ~ 3300 K
- ⊕ L ~ 1100 L_☉

Boffin, Hillen, Berger+, submitted

HD 352 = AP Psc = 5 Cet

- Semi-detached system? (Eaton & Barden 86, 88: hot secondary is immersed in dense lower atmosphere of K giant)
- ֎ P = 96.4371 d
- Ellipsoidal variations
- ℜ = 3.58 ± 0.48 mas (van Leeuwen 07)
- $\circledast R_{\rm L} \approx 50 R_{\odot} \rightarrow R/R_{\rm L} \approx 0.9 \pm 1!$

HD 352 - Elongated

HD 352 - Elongated

Elongation ratio: 1.16

1.38 x 1.6 mas

Need to:

- Have better data with longer baselines to confirm this
- Measure diameter as function of orbital phase
- Compare with LC models

FG Ser

✤ P = 633.5 d

- Was observed twice, 41 day apart, and gave 2 different diameters!
- 0.83 ± 0.03 mas and 0.94 ± 0.05 mas
- No Hipparcos distance
- Is synchronised
- \rightarrow Need further monitoring!

PIONIER mini-survey

 Table 6. Summary table of parameters of our target stars.

Star	Parallax	$T_{\rm eff}$	Radius	M _{bol}	$f = R/R_L$	v sin i	synchronised?
	(mas)	(K)	(R _☉)			km/s	
HD 190658	2.6:	3260	104:	-2.6:	0.4–1	?	_
HD 352	3.58	4000	44.7	-1.78	0.8–1	22	У
V1261 Ori	~ 1.96	3650	~ 120	-3.5	~0.3	< 4	n
ER Del	> 0.4	3500	> 115	< -3.3	0.2 - 0.3	< 4	_
FG Ser	< 0.6	3100	~ 160	< -3.6	~ 1	9.8	У
AG Peg	< 1	3550	> 47	< -1.5	0.25-0.55	8.5	У

Boffin, Hillen, Berger+, submitted

SUMMARY

- PIONIER has provided a complete new view on symbiotic stars
- We revisited SS Lep with PIONIER/VLTI:
 - Mass ratio lower than previously thought
 - M star does not fill its RLOF
 - System currently in wind RLOF configuration?
 - The A star is not inflated but more likely surrounded by a disc
- Interferometry also allows to determine distortion of star (tidal effect) and measure precisely their radius. Coupled with precise light curve modelling, this will constraint the systems.
- Main limitations: distances \rightarrow GAIA welcome!

