YSO environments The VLTI view

Myriam Benisty IPAG, Grenoble

Outline

I.The inner AU

2. Herbig Ae Be stars

3. Transition disks

4. Massive YSO & Multiplicity

5. Perspectives

[Phan-Bao et al. 2008]

Disk evolution

Disk evolution

The inner AU

NIR Sizes

[Lynden-Bell & Pringle 1974 Chiang & Goldreich 1997]

NIR Sizes

Dullemond, Dominik & Natta 2001, Isella & Natta 2005

Before VLTI

Eisner et al. 2004

VLTI

Acke et al. 2007

Before VLTI

0.8

0.6

0.4

0.2

0.0

0

3

VLTI

Outline

I.The inner AU

2. Herbig Ae Be stars

3. Transition disks

4. Massive YSO & Multiplicity

5. Perspectives

Dust size distribution

Inner disks (< 2 AU) have:

- larger silicate grains
- high fraction of silicates is crystalline (40-100%)

van Boekel et al. 2004; also Ratzka et al. 2007, Schegerer et al. 2007

Rim morphology

Strong CP traces the vertical structure

Rim morphology

Strong CP traces the vertical structure

Curved and smooth inner rims are favored

Kraus et al. 2007

A complex inner disk

Hour Angle (h)

HD163296 (A1)

A complex inner disk

A complex inner disk

Disk diameter [mas]

Kraus et al. 2008a

MWC147, B6

.... or optically thick gas ?

- Temperature power laws do not fit the wavelength-dependent sizes.
- Passive disk+inner accretion disk reproduce SED+NIR+MIR interferometry
- NIR emission dominated by accretion luminosity
- MIR emission also from outer disk

also Wheelwright et al. 2013

Inner disk kinematics

Luminous Herbig Be star V921 Sco

Bry emitted in a disk in Keplerian rotation inside the dust rim

Kraus et al. 2012b

also, Ellerbroek et al. 2014

In the imaging era

HR5999 (A7) AMBER 3T Benisty et al. 2011

5.75 AU

HD98922

relative δ (mas)

A variety of morphologies

From J. Kluska, JP Berger Large Program PIONIER

Dynamics during outburst

VI647 Orionis (TTS)

Mosoni et al. 2013

Dynamics during outburst

VI647 Orionis (TTS)

- Structural changes traced on AU-scales.
- Accretion rate, disk/enveloppe radii increased during outburst.

Dynamics during outburst

Jet launching region

MWC297

S

Bry indirect tracer of accretion ?

Łi

Weigelt et al. 2011

also, Malbet et al. 2007, Kraus et al. 2008, Garcia et al. 2013

Outline

I.The inner AU

2. Herbig Ae Be stars

3. Transition disks

4. Massive YSO & Multiplicity

5. Perspectives

Transition disks

Olofsson et al. 2011, 2013; also Matter et al. 2014, Benisty et al. 2010b, Tatulli et al. 2011

Transition disks

HD100546

Mulders et al. 2013, also Panic et al. 2012

Transition disks

VI247 Ori

Kraus et al. 2013

see also Carmona et al. 2014

Outline

I.The inner AU

2. Herbig Ae Be stars

3. Transition disks

4. Massive YSO & Multiplicity

5. Perspectives

Massive YSOs

- Early evolutionary phases not well understood
- Distribution of infalling/ outflowing materials?
- Significant deviations from spherical symmetry
- Supports scenario of MYSO formation via accretion from disks

Also, Kraus et al. 2010, Boley et al. 2012, Grellmann et al. 2011

Massive YSOs

- Non spherically symmetric emitting structure at 100 AU
- MIR emission from cavity walls
- MIDI rules out presence of disk more massive than 0.01 Msun

de Wit et al. 2010,2013

Multiplicity

Discover of a 25 mas companion

Orbit and stellar parameters

Grellmann et al. 2013

-40

Conclusions

- Multi-wavelength observations are insightful
- Detailed studies confirm that the inner AUs of YSOs are complex (rim+additional component)
- Transition disks show compact inner disks (in small grains) and interferometry can bring strong constraints on the amount of material located inside the gap
- MYSOs environments show deviations from spherical symmetry
- TTS models require active disks and (sometimes) envelopes
- Second generation instruments will provide better sensitivity, better UV coverage, a good wavelength coverage for disk-studies

