

10 years of Operations of the VLT interferometer

Antoine Mérand VLTI System Scientist

10 years or operations in one plot

Improvements

Observation execution time (CAL-SCI):

2006	2010	2013	
~120min	60min	40min	

we switch between instruments / config in 10 minutes

AMBER guaranteed limiting magnitude:

2010	2013
K = 5/7	K = 6/8

after spectrograph realignement and change of one optic by PAR-INS

soon: expected addition 1 mag more with polarization control "à la PIONIER"

 AMBER blind mode (AMBER++): sensitive but low precision: dozen of AGNs K>10

 MIDI+PRIMA/FSU: gain of 2 mag lim, AGNs survey on the ATs (before on UTs)

Imaging

imaging == rich u,v coverage (and good data)

Requirements / constraints

- use 4 ATs configurations instead of 3ATs
- allow to change triplets during the night
- ideally, 4ATs configurations do not have baselines in common -> at most 1 AT in common
- on Paranal, for regular operations, only 2 ATs can be moved per day

Implications:

- validate 4AT operations: AT reliability and PIONIER
- offer 3 x 4ATs configurations with one AT in common (2 days between configurations)

imagın

ska et al. prep

- VLTI first images in 2009
- **2012**: Non-redundant 4T-configurations (ATs)
 - scheduling "program oriented"
 - increased number of relocation nights
 - scheduling nightmare...

80-50-44

u,v coverage dec=-24.0 [5.0h obs]

VLTI community days - Jan 2014

Efficiency metrics

- How many observations per hour effectively?
- How many unique u,v points per hour?

	2006	2010	2013
operations	40%	60%	80%
obs / h	0.5	1	1.5
sci - reloc	80%	75%	70%
eff. obs / h	0.15	0.45	0.85
u,v / config	3	4	6
unique u,v points / h	0.5	1.8	5

enables qualitative improvement of science: "YSO: size / Lum" → "image the inner rim of the disk"

What about the weather?

Paranal runs the ASM (Atmospheric Site Monitor)

http://archive.eso.org/asm/ambient-server

http://archive.eso.org/asm/ambient-server?night=+12+Jan+2014&site=paranal

5

Sensitivity to weather

- Seeing:
 - bad coupling in single mode fibers (low sensitivity)
 - measured by differential image motion monitor (DIMM)
 - only used by users to select the conditions (0.6, 0.8, 1.2)
- Coherence time (tau0):
 - speed of the turbulence
 - how fast fringes get blured (how fast we need to take frames)
 - not measured in practice: deduced from seeing and turbulent wind speed (from model)

Local wind

- low wind (<1m/s): dome seeing in the ATs
- high wind (>10m/s): ATs shake and fringes are blurred

Seeing

median DIMM seeing ~ 1.0"

DIMM: what ATs see but pessimistic estimate for UTs

Coherence Time

- large seasonal variations (jet stream)
 - median: from ~2ms to ~4ms

Interferometric conditions

- seeing <0.6" <0.8" <1.2"</p>
- coherence time >2 ms
- wind speed 1 to 10 m/s

Mérand et al. 2012 SPIE paper on FINITO data analysis

lessons learned on weather

strong seasonal effects!

- January/February is the **best** (low seeing but high coherence time)
- July/August: very fast turbulence
- explanation: jet stream located ~30°S and moves south in the (austral) summer
- weather loss is "built-in": at best ~70% of the time is suitable to (fast) interferometry

Improvements?

- fringe tracking? actually used to set conditions for this study...
- AO? NAOMI for ATs would enable to use the least favorable conditions (wind<1m/s and seeing ~1 to 2")

Amount of requested time

_ I @ L # H I = I = 0 = # C % L

All targets: AMBER

二 || ② |= :: + | | = | | = | = | = := :: 0 ※ |=

All targets: MIDI

二 || ② |= :: + | | = | | = | = | = := :: 0 🔅 😐

+ES+

All target: PIONER

- Dominated by the galactic plane
 - AMBER > MIDI > PIONIER
 - because we look at stars
 - implies more trouble to schedule (esp. around April)
- Requested declinations:
 - actually, southern directions more requested
 - ... or observability of northern declination too limited?
 - important input for AT configurations (delay lines limits)

time requests (P93)

	AMBER	MIDI	PIONIER
AT / UT	66% / 33%	40% / <mark>60%</mark>	<mark>90%</mark> / 10%
small quadruplet medium quadruplet large quadruplet	26% 37% 37%	20% 40% 40%	15% 25% <mark>60%</mark>
service / visitor	12% / 88%	35% / 65%	0% / 100%

- AMBER PIs vastly prefer visitor mode (more efficient?)
- MIDI PIs need sensitivity
- PIONIER is sensitive enough to do a lot on ATs
- PIONIER PIs need angular resolution

AMBER weather requests

what people want / what we get:

some hard points

- Sensitivity
 - VLTI transmission is monitored: currently >40% in K
 - not the full story: single mode fiber injection -> AO
 - simple instruments are more sensitive
- Scheduling
 - VM ranked highest scheduled first -> sets the AT schedule
 - schedule of the rest until no time left
- Developments and improvements in an operational environement
 - strong inertia of ESO operations (4+6mo cycle)
- Lessons learned in fringe tracking
 - FINITO has disapointing sensitivity (high RON, low transmission)
 - ...but PRIMA has fringe-tracked on K>8 on the ATs

hype cycle

+ES+

hype cycle: fringe tracking

one harder points: UT vibrations

- Vibrations mostly on UTs: underperformance compared to ATs
 - Cause:
 - intrinsic vibrations of the telescope...
 - ...excited by every thing else (instruments, etc.)
- Solutions -> OPD residuals saturates around 300nm
 - fringe tracking -> overwhelmed
 - Manhattan: accelerometers M1,2,3 and open loop corrections
 - passive dumping of instruments
 - Feb 2013: "no instruments" measurements campaingn
 - UT1 and UT3 with instruments turned OFF
 - at some frequencies: x0.75 on UT1 and x0.5 on UT3
 - OPD rms from 300nm to 240nm on UT1-UT3
- STC has tasked ESO to improve further the situation

Conclusions

- VLTI is continuously improving (x10 in 6 years)
- We are victim of our sucess
 - good u,v coverage / many relocations nights
 - operations scheduling favors few program
 - some highly ranked programs not scheduled
 - 1rstG instruments show their limitations
- Challenges
 - Operations optimized for 1G, can we maintain for 2G?
 - Operation limited: hard to do time coverage and snaphot imaging etc.
 - sensitivity improvement is not a simple issue
- Hard points remain...